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A.C.S. Assis Jesus3, O. Atramentov49, C. Avila8, F. Badaud13, L. Bagby50, B. Baldin50, D.V. Bandurin59, P. Banerjee29,

S. Banerjee29, E. Barberis63, A.-F. Barfuss15, P. Bargassa80, P. Baringer58, J. Barreto2, J.F. Bartlett50, U. Bassler18,
D. Bauer43, S. Beale6, A. Bean58, M. Begalli3, M. Begel73, C. Belanger-Champagne41, L. Bellantoni50, A. Bellavance50,

J.A. Benitez65, S.B. Beri27, G. Bernardi17, R. Bernhard23, I. Bertram42, M. Besançon18, R. Beuselinck43, V.A. Bezzubov39,
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S.P. Denisov39, S. Desai50, H.T. Diehl50, M. Diesburg50, A. Dominguez67, T. Dorland82, A. Dubey28, L.V. Dudko38,
L. Duflot16, S.R. Dugad29, D. Duggan49, A. Duperrin15, J. Dyer65, A. Dyshkant52, M. Eads67, D. Edmunds65, J. Ellison48,
V.D. Elvira50, Y. Enari77, S. Eno61, P. Ermolov38,‡, H. Evans54, A. Evdokimov73, V.N. Evdokimov39, A.V. Ferapontov59,
T. Ferbel71, F. Fiedler24, F. Filthaut35, W. Fisher50, H.E. Fisk50, M. Fortner52, H. Fox42, S. Fu50, S. Fuess50, T. Gadfort70,

C.F. Galea35, C. Garcia71, A. Garcia-Bellido71, V. Gavrilov37, P. Gay13, W. Geist19, W. Geng15,65, C.E. Gerber51,
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E. Strauss72, M. Strauss75, R. Ströhmer25, D. Strom53, L. Stutte50, S. Sumowidagdo49, P. Svoisky35, A. Sznajder3,
A. Tanasijczuk1, W. Taylor6, B. Tiller25, F. Tissandier13, M. Titov18, V.V. Tokmenin36, I. Torchiani23, D. Tsybychev72,

B. Tuchming18, C. Tully68, P.M. Tuts70, R. Unalan65, L. Uvarov40, S. Uvarov40, S. Uzunyan52, B. Vachon6,
P.J. van den Berg34, R. Van Kooten54, W.M. van Leeuwen34, N. Varelas51, E.W. Varnes45, I.A. Vasilyev39, P. Verdier20,
L.S. Vertogradov36, M. Verzocchi50, D. Vilanova18, F. Villeneuve-Seguier43, P. Vint43, P. Vokac10, M. Voutilainen67,g,

R. Wagner68, H.D. Wahl49, M.H.L.S. Wang50, J. Warchol55, G. Watts82, M. Wayne55, G. Weber24, M. Weber50,h,
L. Welty-Rieger54, A. Wenger23,i, N. Wermes22, M. Wetstein61, A. White78, D. Wicke26, M. Williams42, G.W. Wilson58,

S.J. Wimpenny48, M. Wobisch60, D.R. Wood63, T.R. Wyatt44, Y. Xie77, C. Xu64, S. Yacoob53, R. Yamada50, W.-C. Yang44,
T. Yasuda50, Y.A. Yatsunenko36, H. Yin7, K. Yip73, H.D. Yoo77, S.W. Youn53, J. Yu78, C. Zeitnitz26, S. Zelitch81, T. Zhao82,

B. Zhou64, J. Zhu72, M. Zielinski71, D. Zieminska54, A. Zieminski54,‡, L. Zivkovic70, V. Zutshi52, and E.G. Zverev38

(The DØ Collaboration)

1Universidad de Buenos Aires, Buenos Aires, Argentina
2LAFEX, Centro Brasileiro de Pesquisas Fı́sicas, Rio de Janeiro, Brazil

3Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
4Universidade Federal do ABC, Santo André, Brazil
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We report on a search for large extra spatial dimensions in the dielectron and diphoton channels using a data
sample of1.05 fb−1 of pp̄ collisions at a center-of-mass energy of 1.96 TeV collectedby the D0 detector at
the Fermilab Tevatron Collider. The invariant mass spectrum of the data agrees well with the prediction of the
standard model. We find 95% C.L. lower limits on the effectivePlanck scale between 2.1 and 1.3 TeV for 2 to
7 extra dimensions.

PACS numbers: 04.50+h, 04.80.Cc, 11.25.Mj, 13.85.Rm, 11.10.Kk, 13.40.Hq

Within the standard model (SM) the mass of Higgs boson is
unstable against radiative corrections. The fact that the mass
is not of the order of the GUT or Planck scales at1016 or
1019 GeV but ratherO (102 GeV) is commonly referred to as
the “hierarchy problem”. One way to circumvent the need for
such fine tuning in the Higgs mass is by extending the dimen-
tionality of the space, as in the large extra dimension model
(LED) proposed by Arkani-Hamed, Dimopoulos and Dvali

(ADD) [1], which posits that the fields of the standard model
are pinned to a (3 + 1)-dimensional membrane, while grav-
ity propagates innd additional compactified spatial dimen-
sions. Gauss’ Law gives the relation between the fundamental
Planck scaleMD, the observed Planck scaleMPl, and the size
of the extra dimensionsR:

[

MPl
]2

≈ Rnd

[

MD

]nd+2
. If R is

large compared to the Planck length≃ 1.6 × 10−33 cm,MD

can be as low asO (1 TeV), thus avoiding the hierarchy prob-
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lem and making gravity strong at the TeV scale. Extra spa-
tial dimensions will manifest themselves by the presence of
a series of graviton states, known as a “Kaluza-Klein tower”,
(GKK). At colliders, large extra dimensions can be probed
by searching for the effect ofGKK on fermion or boson pair
production [2].

Extra dimension amplitudes will result in enhancement of
the cross sections above the SM values, especially at high en-
ergies. The LED cross section, which consists of SM, inter-
ference, and direct gravity terms, can be parametrized by a
single variableηG = F/M4

s whereMs is the the effective
Planck scale, the ultraviolet cutoff of the sum over Kaluza-
Klein states in virtual graviton exchange. The exact rela-
tionship betweenMs andMD depends on the exact quantum
gravity scenario although they are of the same order of mag-
nitude. The dimensionless parameterF to leading order (LO)
and the sub-leadingnd dependence is given by

F = 1, (GRW [3]) (1)

F =

{

ln(M2
s /ŝ) for nd = 2,

2

nd−2
for nd > 2

(HLZ [4]) (2)

whereŝ is the center of mass energy of the partonic subpro-
cess.

In this Letter, we present a search for LED performed in
events containing ane+e− or γγ pair with 1.05 fb−1 of pp̄
collider data collected with the upgraded D0 detector [5] be-
tween October2002 and February2006. With 127 pb−1 of
data, D0 has published limits onMs ranging from0.97 to
1.44 TeV for nd = 7 – 2 in the combined dielectron and
diphoton channels [6]. D0 has also published limits in the
dimuon channel with246 pb−1 of data [7]. The efficiency
and resolution for high energy electromagnetic (EM) objects
at D0 are superior to those for muons and so a search for LED
in combinede+e− andγγ (di-EM) final states is superior to
the dimuon channel. D0 and CDF have also published lim-
its onMD in the monophoton and monophoton plus monojet
final states, respectively [8].

Events are collected using triggers requiring the presence
of at least one EM calorimeter shower with the transverse
momentum with respect to the beam axis,pT , greater than
15 GeV. From these data we selecte+e− andγγ events using
criteria that do not distinguish photons from electrons. We
require events with two EM showers withpT > 25 GeV.
Showers are labelled CC (EC) if they are reconstructed in
the central calorimeter (end cap calorimeters) with|η| < 1.1
(1.5 < |η| < 2.4), where pseudorapidityη = − ln[tan(θ/2)]
andθ is the polar angle measured with respect to the proton
beam direction. To reduce multijet background, we require at
least one shower to be in the CC, so that selected events are ei-
ther CC-CC (both showers in the CC) or CC-EC (one shower
in the CC and the other in the EC). Each EM shower is re-
quired to be isolated, with less than7% of the cluster energy
in an annular cone0.2 < ∆R < 0.4 about the shower cen-
troid, where∆R =

√

(∆η)2 + (∆φ)2 andφ is the azimuthal
angle. We also demand the scalar sum of thepT of all tracks

in the cone0.05 < ∆R < 0.4 be less than2 GeV. Finally, we
demand the EM shower profile be consistent with that of an
electron or photon using aχ2 test and that97% of the shower
energy be contained in the EM calorimeter.

The efficiencies for the electron and the photon selection
criteria are determined from the same data set used for the
event selection. We estimate separately the efficiencies for
theχ2 requirement on the EM shower shape, the isolation re-
quirements based on∆R, and for all calorimeter-based high-
pT triggers relevant to this analysis. In order to estimate the
different efficiencies, we select a sample of di-EM events sat-
isfying very loose EM identification requirements with invari-
ant mass within±40 GeV around Z boson mass. For each
of these di-EM candidate events we estimate the efficiency
as a function ofη versuspT using the tag and probe method
[9]. This efficiency is then applied to Monte Carlo simulation
samples.

The irreducible background to the LED signal is from
SM e+e− andγγ production, while instrumental background
arises from multijet andγ + jet events with jets misidentified
as EM objects. To model the invariant mass distribution of
the physics backgrounds, we use thePYTHIA [10] event gen-
erator using the CTEQ6L1 parton distribution functions [11],
followed by aGEANT-based [12] detector simulation and re-
construction with the same algorithms as applied to data. The
next-to-leading order (NLO) effect for bothe+e− andγγ is
taken into account by multiplying the leading order (LO) cross
section by a mass independentk-factor of 1.34 [13].

We generate the LED signal for2 ≤ nd ≤ 7 and33 differ-
ent values ofMs using a parton level generator [14]. Follow-
ing [4], we assumeBr(GKK → γγ)/Br(GKK → e+e−) =
2. In order to model the effects of detector resolution and
initial state radiation (ISR), we generate LED+SM and SM-
only events separately to obtain the parton level distributions
of the di-EM invariant mass versus the cosine of the scattering
angle in the centre of mass frame of the two EM candidates
(| cos θ∗|) for each value ofMs andnd considered. The ratio
of the LED+SM and SM distributions are obtained for all val-
ues ofMs andnd. Standard model events generated with the
detailedGEANT-based Monte Carlo simulation are weighted
by this ratio to model the effect of an LED signal. We reweight
the shape of the SM to simulate the LED signal, keeping the
overall normalization as in the pure SM case. By normaliz-
ing to the Z boson production cross section (NNLO), where
the signal contribution is negligible, we reduce the fractional
uncertainty on the product of the efficiency and integrated lu-
minosity.

To estimate the normalization of the multijet background,
we fit the di-EM invariant mass distribution of the selected
data events with a linear combination of the physics and in-
strumental background distributions. The shape of the invari-
ant mass distribution for the instrumental background is esti-
mated from data events with EM energy clusters that fail the
χ2 requirement for the shower profile. This fit is performed
in the mass range60 – 140 GeV where we expect no con-
tribution from LED. We obtain separate fits for CC-CC and
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TABLE I: Number of events observed and expected from SM processes in different mass windows for CC-CC and CC-EC events. The
individual contributions to the total SM expectation from multijet, e+e− andγγ are also shown separately.

CC-CC CC-EC
Mass Data Total Background Multijet (MJ) e+e− γγ Data Total Background Multijet (MJ) e+e− γγ

(GeV) N Nb ± N
sys
b NMJ ± N

sys
MJ Ne+e− Nγγ N Nb ± N

sys
b NMJ ± N

sys
MJ Ne+e− Nγγ

240–290 61 67± 8 22± 3.1 30 15 144 171± 34 115± 34 34 21
290–340 30 28± 4 7± 1 14 7 52 55± 11 35± 11 12 8
340–400 21 15± 2 3± 1 7 5 21 23± 5 12± 4 7 4
400–500 9 9± 1 1.4± 0.3 5 3 12 9± 2 4± 2 3.3 1.2
500–600 1 3.6± 1.2 0.14± 0.09 2.4 1.1 2 1.5± 0.4 0.6± 0.2 0.73 0.18
600–1000 2 1.3± 0.1 0.11± 0.06 0.67 0.53 0 0.35± 0.07 0.03± 0.04 0.24 0.08
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FIG. 1: The di-EM invariant mass distributions for CC-CC (a)and CC-EC (b) events. The data are shown by points with error bars, the filled
histograms represent the Drell-Yan, diphoton and multijetbackgrounds, and the solid line represents the total background. The broken lines
show the invariant mass distributions for two different values ofMs for nd = 4. The error bars for the total background include both statistical
and systematic uncertainties.
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FIG. 2: The distributions of the center-of-mass scatteringanglecos θ∗ of the two final state EM candidates in CC-CC (a) and CC-EC (b)
events. The data are shown by points with error bars, the filled histogram represent the multijet background, and the solid line represents
the total background. The broken lines show thecos θ∗ distributions for two different values ofMs for nd = 4. The error bars for the total
background include both statistical and systematic uncertainties.

CC-EC events. From the fits we determine the fractionfMJ of
the multijet contribution to the total background in the mass
range60 – 140 GeV to befMJ = 0.22 ± 0.03 in CC-CC
events andfMJ = 0.24 ± 0.07 in CC-EC events. We ex-
trapolate the total background using the fitted value offMJ to
determine the expected number of background events with in-
variant mass above140 GeV in both the CC-CC and CC-EC
configurations. Table I shows the numbers of events in dif-
ferent mass ranges for CC-CC and CC-EC where we would

expect the LED signal to appear. The number of events is
consistent with the number of expected events from the SM
expectation. Figure 1(a) shows the invariant mass distribution
for CC-CC events and Fig. 1(b) for CC-EC events. The distri-
butions of| cos θ∗| are shown in Fig. 2 for CC-CC and CC-EC
both for data and the background model. We find that the total
background distribution for the invariant mass and| cos θ∗| is
consistent with the data within statistical and systematicun-
certainties.
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Most of the systematic uncertainties on the background
model are dependent on the invariant mass. The dominant un-
certainty arises from the efficiency of theχ2 cut on the shower
profile used to estimate multijet background (13% of the back-
ground itself in CC-CC and 30% in CC-EC). The systematic
on the LED modeling is dominated by uncertainties on the
choice of parton distribution functions

[

(1–19)% in CC-CC
and (1.5–12)% in CC-EC

]

. All the other signal uncertainties
are correlated to SM background uncertainties due to the tech-
nique used to generate our LED signal. Table II summarizes
the dominant background and signal uncertainties taken into
account in calculating the limit onMs. The NLO k-factor un-
certainty refers to the uncertainty due to choice of PDF, renor-
malization and factorization scale.
TABLE II: Systematic uncertainties (in %) on the predicted numbers
of signal and background events considered in calculating the limit
onMs.

CC-CC CC-EC
Signal only

Acceptance 1–19 1.5–12
Luminosity 4

Signal and
background

Trigger + EM selection 6 5
Energy scale 5–13 0.3–3.5
Energy resolution 0.3–1.7 0.2–3.5
NLO k-factor 3–10
k-factor mass dependence 5
PDF 5.5–9

Background only
Multijet 13 30

The two-dimensional distribution of the invariant mass and
| cos θ∗| for the observed dielectron and diphoton events is
compared with the corresponding distributions expected from
SM physics and instrumental background, and the LED signal
for Ms ranging from1 TeV to3 TeV for a givennd. The pos-
terior probability densityP (Ms | Data) given the number of
observed events in thekth mass bin andlth cos θ∗ bin, Nk,l

obs,
is then computed using a Gaussian prior for the SM plus mul-
tijet background. Evidence of large extra dimensions with a
givenMs will appear as a peak inP (Ms | Data) distribution.
In the absence of signal we proceed to estimate the lower limit
on Ms using the semi-frequentist CLs method [15], which is
based on computation of a log likelihood ratio. Both the ex-
pected and observed limits onMs at the 95% C.L. are calcu-
lated. Systematic uncertainties in the signal and background
distributions are taken into account in this calculation, with
their correlations properly included. The distribution ofthe
ratio of the observed (expected) upper limit at the 95% C.L.
limit to the predicted cross section as a function ofMs is used
to extract the observed (expected) limit onMs for nd = 7 to
nd = 2.

For thend independent GRW formalism, we calculate the
observed(expected) limit onMs of 1.62(1.66) TeV. We ob-
tain the observed limits onMs at the 95% C.L. in the HLZ
formalism (sub-leading,nd dependent) ranging from1.29 to

TABLE III: Observed and expected lower limits at the 95% C.L.on
the effective Planck scale,Ms, in TeV.

GRW HLZ
nd 2 3 4 5 6 7

Obs. 1.62 2.09 1.94 1.62 1.46 1.36 1.29
Exp. 1.66 2.16 2.01 1.66 1.49 1.38 1.31

)
d

Number of Extra Dimensions (n
2 3 4 5 6 7

 [
T

eV
]

s
M

1

1.5
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D0 PRL 86, 1156 (2001)

expected limit

observed limit

-1DØ, 1.05 fb

FIG. 3: Observed and expected limits on the effective Planckscale,
Ms, in the di-EM channel along with previously published limits in
di-EM channel.

2.09 TeV for nd = 7 to nd = 2. Both the observed and ex-
pected limits onMs, for different formalisms and for six dif-
ferentnd are summarized in Table III. The observed and ex-
pected limits onMs for a given number of extra dimensions
are found to be similar. The present limits are a significant
improvement over the published limit [6]. Figure 3 summa-
rizes the observed and expected limits onMs along with the
previously published limits onMs in the di-EM channel.

In summary, we have performed a dedicated search for
large extra spatial dimensions by looking for effects of virtual
Kaluza-Klein graviton in the dielectron and diphoton chan-
nels using1.05 fb−1 of data collected by D0 detector. We
see no evidence of excess over the standard model prediction
and set limits at 95% C.L. on the effective Planck scale at
2.09(1.29) TeV for2(7) extra dimensions. These are presently
the most restrictive limits on large extra dimensions.
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